HOW TO SOLVE IT

如何解决

 

UNDERSTANDING THE PROBLEM

First.

You have to understand the problem.

What is the unknown? What are the data? What is the condition? Is it possible to satisfy the condition? Is the condition sufficient to determine the unknown? Or is it insufficient? Or redundant? Or contradictory?

Draw a figure. Introduce suitable notation.

Separate the various parts of the condition. Can you write them down?

了解问题

首先

你必须 理解 这个问题。

未知数是什么?数据是什么?条件是什么? 是否有可能满足该条件?该条件是否足以确定未知数?还是不充分?或者是多余的?或者是矛盾的?

画一个图形。引入适当的符号。

把条件的各个部分分开。你能把它们写下来吗?

 
 
 

DEVISING A PLAN

Second.


You may be obliged to consider auxiliary problems if an immediate connection cannot be found.
You should obtain eventually a plan of the solution.

Have you seen it before? Or have you seen the same problem in a slightly different form?

Do you know a related problem? Do you know a theorem that could be useful?

Look at the unknown! And try to think of a familiar problem having the same or a similar unknown.

Here is a problem related to yours and solved before. Could you use it? Could you use its result? Could you use its method? Should you introduce some auxiliary element in order to make its use possible?

Could you restate the problem? Could you restate it still differently? Go back to definitions.

If you cannot solve the proposed problem try to solve first some related problem. Could you imagine a more accessible related problem? A more general problem? A more special problem? An analogous problem? Could you solve a part of the problem? Keep only a part of the condition, drop the other part; how far is the unknown then determined, how can it vary? Could you derive something useful from the data? Could you think of other data appropriate to determine the unknown? Could you change the unknown or the data, or both if necessary, so that the new unknown and the new data are nearer to each other?

Did you use all the data? Did you use the whole condition? Have you taken into account all essential notions involved in the problem?

 

制订计划

第二。

找到数据和未知数之间的联系。
如果不能找到直接的联系,你可能不得不考虑辅助问题。
你最终应该得到一个解决方案的 计划

你以前见过这个问题吗?或者你是否看到过同样的问题,但形式略有不同?

你知道一个相关的问题吗?你知道一个可能有用的定理吗?

看看这个未知数吧!试着去想一个熟悉的问题,有相同或类似的未知数。

这里有一个与你有关的问题,以前也解决过。你能使用它吗?你能使用它的结果吗?你能使用它的方法吗?你是否应该引入一些辅助元素,以使其使用成为可能?

你能重述这个问题吗?你还能以不同的方式重述吗?回到定义上来。

如果你不能解决所提出的问题,试着先解决一些相关问题。你能想象一个更容易获得的相关问题吗?一个更普遍的问题?一个更特殊的问题?一个类似的问题?你能解决一部分问题吗?只保留条件的一部分,放弃另一部分;那么未知数在多大程度上被确定,它可以如何变化?你能从这些数据中得出一些有用的东西吗?你能想到其他适合确定未知数的数据吗?你能不能改变未知数或数据,或者必要时两者都改变,以使新的未知数和新的数据更接近对方?

你使用了所有的数据吗?你使用了整个条件吗?你是否考虑到了问题中涉及的所有基本概念?

 

CARRYING OUT THE PLAN

Third.

Carry out your plan.

Carrying out your plan of the solution, check each step. Can you see clearly that the step is correct? Can you prove that it is correct?

 

执行计划

第三。

执行你的计划。

执行你的解决方案计划,检查每个步骤。你能清楚地看到这个步骤是正确的吗?你能证明它是正确的吗?

 

LOOKING BACK

Fourth.

Examine the solution obtained.

Can you check the result? Can you check the argument?

Can you derive the result differently? Can you see it at a glance?

Can you use the result, or the method, for some other problem?

 

回头看

第四。

检查获得的解决方案。

你能检查结果吗?你能检查一下论据吗?

你能以不同的方式推导出结果吗?你能一目了然地看到它吗?

你能用这个结果或这个方法来解决其他问题吗?